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ABSTRACT
Physiological signals can potentially be applied as objective mea-
sures to understand the behavior and engagement of users in-
teracting with information access systems. However, the signals
are highly sensitive, and many controls are required in labora-
tory user studies. To investigate the extent to which controlled or
uncontrolled (i.e., confounding) variables such as task sequence
or duration influence the observed signals, we conducted a pilot
study where each participant completed four types of information-
processing activities (READ, LISTEN, SPEAK, andWRITE). Meanwhile,
we collected data on blood volume pulse, electrodermal activity,
and pupil responses. We then used machine learning approaches
as a mechanism to examine the influence of controlled and uncon-
trolled variables that commonly arise in user studies. Task duration
was found to have a substantial effect on the model performance,
suggesting it represents individual differences rather than giving
insight into the target variables. This work contributes to our un-
derstanding of such variables in using physiological signals in in-
formation retrieval user studies.
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1 INTRODUCTION
Laboratory user studies are an effective mechanism to understand
howusers interact with information access and retrieval systems [15,
17]. However, designing user studies is not trivial, as it requires
controlling for numerous factors influenced by each individual
participating in the experiment, and their perception of the infor-
mation and task. Information-seeking models have been proposed
to characterize how users interact with a variety of systems such
as screen-based search [5, 23], spoken conversational search [30],
multimedia platforms [32], or multi-modality input/output in con-
versational recommender systems [16]. Most user-system interac-
tions in such systems involve four basic Information-Processing
Activities (IPAs): READ, WRITE, LISTEN, and SPEAK. With the recent
advances in wearable devices, it is natural to wonder what physio-
logical signals can tell us about how users engage in these IPAs.In
this paper, we present the results of a laboratory user study (𝑁 = 7)
where physiological signals – Electrodermal Activity (EDA), Blood
Volume Pulse (BVP), and Pupil Diameter (PD) – are collected using
a wearable device and an eye-tracker. Our ultimate aim is to analyze
the signals by defining a multi-class classification problem: Can we
predict the specific IPA the user performed by feeding a machine-
learning model with the signals obtained from the sensors? The
signals are sensitive to noise. Therefore, we analyze how a set of
variables (both controlled and uncontrolled, but likely to interfere)
influence the machine-learning model’s performance, and whether
this can be used as a mechanism to scrutinize the validity of our
experimental design. Data and code are publicly available online.1

The contributions of this paper are two-fold:
• We introduce a simple but informative methodology that, by
observing changes in the effectiveness of machine learning mod-
els, can potentially characterize the influence of controlled and
uncontrolled variables in complex laboratory user studies.

• The results of this analysis revealed that some variables, such as
the duration of the task, should be carefully designed and gauged
before running the study at a larger scale.

2 RELATEDWORK
User studies are widely used to understand how users interact with
information access and retrieval systems and to collect data for
evaluating such systems. ‘In-the-wild’ studies, e.g., [24], involved

1GitHub: bit.ly/ji2023examining
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complicated factors. Thus lab studies should be cautiously con-
ducted beforehand to understand target outcomes and conditions.
On the other hand, there is growing interest in bio-signals (e.g.,
fMRI [26], eye-tracking [1, 8, 9, 14]), especially when looking at
affective feedback [33, 35]. Despite the sensitivity of bio-signals
[27], the experiment can be influenced by various factors, including
task activities, task designs, environments, and participants’ inner
status (e.g., physical or mental state). Moshfeghi et al. [26]’s user
study consisted of two interaction activities; pressing a physical
button to respond and verbally expressing a search query. The par-
ticipants in Arapakis et al. [1]’s study performed both video- and
text-search tasks. Lin et al. [21] included listening tasks. Granka
et al. [14] controlled the task difficulty levels and topics. Moshfeghi
and Jose [25] controlled the task types (search intentions). Buscher
et al. [8] controlled the document relevance in two user studies.
The relevance varied across short documents in the first and across
sections within a long document in the second. The fatigue and
complexity might have confounding effects.

In affective computing, multi-modal data have been used to de-
tect emotions with three or more classes. Both Verma and Tiwary
[31] and Ganapathy et al. [12] proposed architectures of deep learn-
ing feature-extraction methods with machine learning approaches,
including Multilayer Perceptron (MLP), Support Vector Machines
(SVM), and K-Nearest Neighbors (KNN)multi-label classifiers; while
the former used multi-modal signals and the other used only EDA.
They both tested with the DEAP database [18]. It contains multiple
physiological signals and emotion annotations from watching short
videos. A short break is provided after around 27 minutes. Another
popular multi-modal emotion dataset is the CEAP-360VR dataset
[36] which contains physiological and behavioral signals.

In summary, it remains unclear if multiple activities or variables
contained in one user study would impact the experiment results
and require careful control in information processing experiments.
In this regard, we select the variables that are commonly encoun-
tered and report their impact on a rigorous laboratory study to infer
whether they require careful treatment in the experimental design.

3 USER STUDY
Participants. As a pilot study, 8 participants were recruited in

total. However, data for one participant had to be discarded due
to the collection error and data from 7 participants (5M, 2F) were
analyzed. One participant was in the 35–44 age group, and others
were in the 25–34 age group. The study received ethics approval
from the author’s university, and the participants provided written
consent before the experiment.

Setup and Equipment. There are three sensors used in this study:
a webcam camera for video recording, a Tobii Fusion eye-tracker2
for PD and an E4 wristband3 for EDA and BVP. The equipment
setup is shown in Figure 1. There is a desktop PC mounted with
an eye-tracker and a web camera in the experiment room. The
participant sits in front of the computer and wears the wristband
on the non-dominant hand. All participants used the computer
mouse with their right hand. The instructor leaves the experiment
room after calibration and instruction to avoid interruption.
2https://www.tobii.com/products/eye-trackers/screen-based/tobii-pro-fusion
3https://www.empatica.com/en-int/research/e4/

Tobii Fusion eye-tracker

Empatica E4 wristbandwebcam

Figure 1: Experiment equipment setup.

Procedure. Each participant first completes a pre-task survey.
The survey asks for sleeping hours prior and caffeine intake on
the experiment day, which might affect the cognition status [2].
Figure 2 presents the user study procedure. The study consists of
two sections, each corresponding to two pre-defined activity com-
plexity levels (low and high). For READ and LISTEN IPAs, complexity
is defined using low and high readability scores [34]. The materials
are scientific new items with around 500 words, some converted
into synthesis speeches using Google Neutral Voice for LISTEN. For
SPEAK and WRITE, complexity is estimated by the type of questions
and the length of expected answers. The easy questions are recalling
questions, e.g., ‘what was your routine this morning? (100 words
minimum)’; the hard questions need recalling and analyzing, e.g.,
‘does social media make you in general happier or sadder? why?
(300 words minimum)’. Each section starts with a relaxing activity
(BASE), where the participant is asked to watch a relaxing video and
minimal cognitive efforts are involved. Then, the participant com-
pletes four IPAs: READ, LISTEN, SPEAK, and WRITE. Specifically, the
participant needs to read one article, listen to one article, answer a
question by speaking, and answer a question by typing. After each
task (including BASE), the participant completes an engagement
scale [28].

Figure 2: Flowchart of the user study. The sequences of tasks
and complexity sections are randomized.

Data Pre-processing and Feature Extraction. To synchronize all
the sensors, we convert the timestamps into ISO 8601 time format
with milliseconds. The signals are segmented according to the event
timestamps recorded during the experiment. We follow similar data
cleaning procedures as in [6, 7, 10] for EDA and BVP, and similar
procedures as in [19, 37] for PD data. The pre-processed signals are
first divided by sliding windows (2 seconds with 1-second overlap),
then the average values of each feature are computed. The pre-
processing steps and extracted features are described in Table 1.

https://www.tobii.com/products/eye-trackers/screen-based/tobii-pro-fusion
https://www.empatica.com/en-int/research/e4/
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Data (Raw Hz) Pre-processing Features

Electrodermal 1. Rolling median (5 sec. window) original,
Activity (EDA, 4 Hz) 2. Butterworth bandpass filter (1–8 Hz,

4th order)
1st & 2nd
derivative

Blood Volume Pulse 3. Min-max Normalization
(BVP, 64 Hz) 4. EDA upsampled to 8 Hz

Pupil Diameter 1. Remove with range (1.5–9 mm) mean,
(PD, 250 Hz) 2. Remove and correct the gap caused

by blink
median,

3. Linear Interpolation standard
4. Combine two sides by averaging deviation
5. Zero-phase lowpass filter (4 Hz)
6. Downsampled to 100 Hz

Table 1: The pre-processing steps and extracted features for
each signal. The sliding window is 2 seconds with 1-second
overlap. Features are extracted as in [11, 36].

4 RESULTS AND ANALYSIS
Our classification task consists of classifying four activities: READ,
LISTEN, SPEAK, andWRITE. Overall, our experiment follows a similar
setting to the one proposed by Xue et al. [36]: it includes the same
short-duration signals (70 seconds), the same sensor data (EDA,
BVP, PD), the same collection devices for EDA and BVP data, and
it addresses a multi-class classification problem. We use a leave-
one-participant-out approach for cross-validation. As we have data
from 7 participants, we have 7 times cross-validation. Note that this
is a robust way to split the data: all the folds are equally balanced
(12 training and 2 test instances for each IPA), and on each fold, all
the IPAs of the test participant are in the test split, minimizing the
risk of learning individual patterns from participants.

4.1 Model Selection
First, we compare different machine learning (ML) models which
are commonly used on physiological data [12, 13, 20, 22, 31, 36].
Specifically, we use the following ML models: non-linear SVM
(radial basis function kernel), RF (max. depth=4), KNN (Euclidean
distance) and Naïve Bayes (NBayes). We also use MLP with the
rectified linear unit (ReLU) activation function and Adam optimizer
[3]. We also report the effectiveness of a Random classifier. Figure 3
shows the accuracy of different ML models for our 4-class IPAs
classification.

Random MLP SVM RF KNN NBayes
0.0
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0.2

0.3
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0.46 0.45
0.39

0.45 0.48

Figure 3: Accuracy of different multi-class machine learning
models, using leave-one-participant-out (7 folds). Error bars
indicate 95% confidence intervals (t-distribution).

Overall, we can see that ML models are able to learn from physi-
ological signals with comparable effectiveness. NBayes obtains the

highest mean accuracy, whereas KNN and SVM obtain a compara-
ble performance with smaller confidence intervals (CI). We report
the rest of the experiment using SVM, a non-probabilistic, effective
model often used for physiological data classification [4, 29, 36].
Similar trends were observed with the other ML methods we used.

4.2 Impact of Variables
In total, we examine the influence of five variables. They are two
controlled variables – ‘complexity’ and ‘task_sequence’ – and three
uncontrolled variables – ‘duration’, ‘engage_score’, and ‘cumula-
tive_time_spent’. The hypotheses are made based on the influence
of each variable w.r.t. model effectiveness, which then can be used
to inform changes to make the experimental design of our user
study more robust. Intuitively, the model is supposed to calibrate
the inputs (i.e., performance should not change) if the variables
do not impact the user study. We report confusion matrices that
aggregate the results from the 7 leave-one-participant-out folds.
Our test data also has balanced classes (8 IPAs per participant).
The prediction results with only signal features are presented in
Figure 5a. The model skews to LISTEN and WRITE while less on
SPEAK.

Signal(  )   +Compx   +Seq   +Duration   +Engag   +CTS
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0.59
0.54

0.23

S S S S S S

Figure 4: Accuracy for non-linear SVM classifiers, trained
using signal features with one variable feature. CTS is the
‘cumulative_time_spent’. Error bars indicate 95% confidence
intervals (t-distribution).

4.2.1 Complexity. In the user study, there are two sections for low
or high complexity. We control this variable to prevent participant
distraction from task difficulty. As presented in Figure 4, the accu-
racy increases slightly after adding ‘complexity’ as a feature into the
model. However, in addition to the confusion matrix in Figure 5b,
the complexity does not impact the classifications on WRITE and
SPEAK at all, while it impacts classifications between READ and
LISTEN.Furthermore, we conduct another experiment to classify
the LOW and HIGH complexity using the signal features and lin-
ear SVM. The model results in low performance, 44.6% accuracy
(±10.2%), 36.9% F1 (±11.3%), and 40.2% AUC (±22.6%), indicates that
the model is not able to classify complexities.

The results suggest the complexity level should be carefully
controlled when designing a user study related to reading and
listening. A limitation here is that complexity is instantiated in
different ways for different IPAs (readability score for READ and
LISTEN, complexity of questions and expected length of answers
for SPEAK and WRITE). The result of complexity impacts READ and
LISTEN but not SPEAK and WRITE, potentially due to this difference.
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Figure 5: Aggregated Confusion Matrix for the (a) Physiolog-
ical Signals and controlled variables: (b) Complexity; and (c)
Task Sequence.

4.2.2 Task Sequence. The ‘task_sequence’ in our user study is ran-
domized to counterbalance any potential order effect [17]. After
adding the ‘task_sequence’ as a feature, the accuracy does not
change while the CI expands (Figure 4). In addition to Figure 5c, the
model skews to the READ or LISTEN more (82%) compared to using
only signals. However, the reason is probably the small number
of participants; the sequence of 4 tasks (in 2 sections) cannot be
counterbalanced. By design, BASE activities are always taken as
first and sixth in the sequence. In our pilot study, only SPEAK has
equal occurrences, while READ occurs mostly as last, LISTEN never
appears as last, and WRITE occurs in five out of the eight possible
positions.

The results suggest that ‘task_sequence’ may not impact the
model, as we have not observed changes in the model effectiveness
when adding task_sequence as a feature. However, given the limited
coverage of the possible sequence permutations in the existing data,
we may observe different results in a larger dataset.
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Figure 6: Aggregated ConfusionMatrix for uncontrolled vari-
ables: (a) Duration; (b) Engagement; and (c) Cumulative Time
Spent (CTS).

4.2.3 Activity Duration. In our collected data, the duration unex-
pectedly varies. With this not controlled, we expect that ‘duration’
does not impact the effectiveness of the ML model. However, the
accuracy increases 10% after adding the ‘duration’ as a feature.
Both READ andWRITE are not time-restricted; the duration depends
on the individual. But according to Figure 6a, READ has a 100%
True-Positive rate which indicates that READ has a similar duration
across participants, whileWRITE has more False-Negative results. In
contrast, SPEAK has more False-Negative results which are unantic-
ipated. The ‘next’ button only appears after a minimum pre-defined
time, thus it should have fewer variants across participants, and so
does the LISTEN, which the participants require to listen to audios
for around 2:30 to 3 minutes.

The results suggest that IPA ‘duration’ may play a strong role in
the user study. This finding informs the refinement of our design:

we will encourage duration consistency across tasks by informing
users about the expected duration of each IPA, and by showing a
timer (but not enforcing termination) to nudge users to complete
the activity in time.

4.2.4 Engagement. During our user study, the participants report
their engagement score [28] after completing each IPA. We round
the engagement score into integers, thus it is a rank number from 1–
5. Intuitively, different engagement levels would be reflected in the
physiological signal. However, this should be independent of the
actual type of IPA performed by the participants. After adding the
‘engagement’ as a feature, the model increases around 9% accuracy
but with a larger CI. As shown in Figure 6b, engagement slightly
increases the True-Positive for READ and SPEAK and the False-
positive for READ and LISTEN.

4.2.5 Cumulative Time Spent. In our user study, the whole session
is expected to take 1 hour. We minimize the effect of fatigue by
starting each section with a relaxing activity and providing a break
time in the middle. ‘cumulative_time_spent’ is the cumulative time
each participant takes till each IPA. It can be seen as a proxy of
fatigue: as users progress through the study, they are more likely
to be tired. Adding ‘cumulative_time_spent’ as a feature causes
large accuracy drops (22%). The model is shifted toward LISTEN
and SPEAK, instead of READ and LISTEN. The confusion matrix in
Figure 6c shows that ‘cumulative_time_spent’ causes the model to
draw a large portion of the decisions on the SPEAK and LISTEN.

Both results for ‘engagement’ and ‘cumulative_time_spent’ are
observed to have substantial influences on the model performances.
Although we took measures to avoid fatigue by maintaining the
sessions short, this result suggests that shorter sessions may be
more suitable (e.g., having a longer break between sections). How-
ever, further analysis using auxiliary signals – such as eye-blink
frequency, average time to eye-closed duration, involuntary hand
gestures – will be used to validate whether ‘cumulative_time_spent’
can indeed infer fatigue.

5 CONCLUSION
In this paper, we have used machine learning and the data collected
in a pilot study (𝑁 = 7) as a way to validate the robustness of our
experimental design. In particular, we conduct an ablation study to
examine the influences of five variables by adding each variable as
an additional feature along with the signal features. Based on the
preliminary analysis from examining the changes in the model’s
classification performances, we can infer whether our experimental
design needs further refinement before continuing with the study.
Given the exploratory nature of our investigation and small sample
size limitations, further research is needed to fully understand the
variables’ impacts. But the methodology described in this paper
allowed us to reveal the shortcomings in our experimental design
early in data collection, and may assist practitioners in validating
complex laboratory user study designs in a cost-effective manner.
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