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Abstract
Explainable artificial intelligence techniques are developed
at breakneck speed, but suitable evaluation approaches lag
behind. With explainers becoming increasingly complex and
a lack of consensus on how to assess their utility, it is chal-
lenging to judge the benefit and effectiveness of different ex-
planations. To address this gap, we take a step back from
sophisticated predictive algorithms and instead look into ex-
plainability of simple decision-making models. In this set-
ting, we aim to assess how people perceive comprehensi-
bility of their different representations such as mathematical
formulation, graphical representation and textual summari-
sation (of varying complexity and scope). This allows us to
capture how diverse stakeholders – engineers, researchers,
consumers, regulators and the like – judge intelligibility of
fundamental concepts that more elaborate artificial intelli-
gence explanations are built from. This position paper charts
our approach to establishing appropriate evaluation method-
ology as well as a conceptual and practical framework to fa-
cilitate setting up and executing relevant user studies.
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Motivation
It is often challenging to envisage how novel explainable ar-
tificial intelligence (XAI) and interpretable machine learning
(IML) techniques will be perceived by explainees given their
diverse skills, experiences and background knowledge [28].
The gap between design intention and actual reception of ex-
planatory insights may sometimes be larger than expected
– thus compromising their utility – especially when serv-
ing a lay audience [5, 12]. To alleviate such problems and
enable better design and operationalisation of explainability
systems, we should strive to understand the unique needs
of diverse audiences as well as their specific interpretation
of and satisfaction with different explanation types.

The availability of tools to peek inside opaque predictive
models has ballooned in recent years [4], nevertheless it
remains unclear what constitutes a “good” explanation [28].
To complicate matters further, a good explanation for one
user may be unintelligible for another [11, 28]. Similarly, cer-
tain explanations may be easy to misinterpret or misunder-
stand [20], leading some users to overly rely on or misplace
their trust in these insights [23] (akin to negative comprehen-
sion [11]). This can result in harmful explainers that appear
faithful and trustworthy enough to convince a user of their
truthfulness and utility while at the same time offering hollow
or factually incorrect information [13].

Such scenarios motivate us to assess the intelligibility of fun-
damental building blocks found across XAI and IML tools,
which tend to be complex and multifaceted sociotechnical
systems tested predominantly as end-to-end explainers [30].
By explicitly accounting for how different demographics per-
ceive distinct types and presentation modalities of expla-
nations, our user study aspires to highlight the necessity
of a comprehensive human-centred design and evaluation
framework in this research space.

Objective
We aim to examine how users from diverse backgrounds
perceive explanations of automated decision-making (ADM)
systems. In particular, we intend to explore whether explana-
tory insights foster warranted (and justified) or unwarranted
trust in predictive models [6, 10]. To this end, we propose
three measures suitable for dedicated (online) user studies,
hereafter referred to as the 3-C evaluation framework.

Comprehension The gap between the information offered
by an algorithmic explanation and the information un-
derstood by an explainee (i.e., new knowledge).

Positive comprehension captures known knowns –
the user knows what information an explanation
offers – and known unknowns – the user knows
what information it lacks.

Negative comprehension encompasses unknown
knowns – the user is unable to interpret the
information communicated by an explanation –
and unknown unknowns – the user is ignorant of
the limitations of an explanation.

Confidence The degree of an explainee’s certainty in their
own understanding of an explanation.

Contentment The explainee’s perception of how reliable
and informative an explanation is.

Methodology
To ensure the simplicity of our study as well as generalisabil-
ity of our findings, we investigate a comprehensive and rep-
resentative subset of predictive models, explanation types
and modalities thereof. We focus exclusively on explanations
that are derived directly from the tested models to guaran-
tee their full fidelity and truthfulness [22]. Specifically, we
draw prototypical data-driven predictive models from across
their distinct categories: linear, quadratic and the like from



the geometric family; logistic regression from the probabilis-
tic group; and (shallow) decision tree from the logical col-
lection [7]. We look into algorithmic explanations that ex-
plicitly communicate the model’s (mathematical) operation
as well as observational explanations that capture diverse
aspects of its predictive behaviour through different cate-
gories – associations between antecedent and consequent,
contrasts and differences, and causal mechanisms – and
types – model-based, feature-based, and instance-based –
of explanatory insights [25]. Notably, this broad range of
explanations accounts for their varied scope (local, cohort
or global) and limitations (whether implicit or explicit). We
present them through different media – (statistical or numer-
ical) summarisation, visualisation, textualisation, formal ar-
gumentation, and a mixture thereof – testing both static and
interactive modalities [27, 29].

f(x) = 0.7x1 − 0.3x2

Figure 1: Mathematical represen-
tation of a model.
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Figure 2: Visualisation of feature
influence/importance derived from
a model (e.g., its parameters).

–
+

Figure 3: Visualisation of a deci-
sion boundary used by a predictive
model.
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Figure 4: Visualisation of a deci-
sion tree structure.

Had your income been
e10,000 more,
you would have been
awarded the loan.

Figure 5: Textual counterfactual ex-
planation.

For example, a geometrical model can be explained via its
mathematical formulation (Figure 1), its parameter values
(Figure 2), the visualisation of its decision surface within the
desired space (Figure 3), exemplars sourced from both sides
of its decision boundary, or what-if statements. Similarly, a
logical model, e.g., a decision tree, can be visualised as a
diagram (Figure 4) and explained with decision space parti-
tion, logical rules (root-to-leaf paths), feature importance, ex-
emplars extracted from leaves as well as what-ifs and coun-
terfactuals (Figure 5) derived directly from the model [26].

To better understand how the perception of different explana-
tions varies across the participants, we envisage collecting
basic demographic information such as age, gender, educa-
tional attainment and profession. Literacy is another impor-
tant dimension that affects explanation comprehensibility [5];
while it is difficult to capture in a generic setting, we will adapt
pre-existing scales [32] to assess explainees’ digital literacy
(ability to interact with technology and familiarity with artificial

intelligence techniques), English proficiency and numeracy
(ability to interpret mathematical concepts).

The explainees’ needs as well as the function, depth and
scope of explanations must also be considered since XAI
and IML tools are used by diverse stakeholders to different
ends, e.g., engineers (technical expertise), consumers (no
expertise) and auditors (limited technical knowledge) [1, 14].
Among these audiences, the general public may care only
about the logic leading to a particular decision; regulators
may need to access and assess the end-to-end function-
ing of a predictive system; and practitioners may require the
same insight but with more technical depth. Evaluating the
utility of explanations in view of varied needs, expectations
and expertise can yield important findings that will benefit
the designers and consumers of XAI and IML systems [18].

The within-subject online user study will be based on linear,
polynomial, logistic and decision tree models, and a diverse
set of explanations spanning model presentation (Figures 1
& 4), model summarisation (Figure 2), decision boundary vi-
sualisation (Figure 3) and textual counterfactuals (Figure 5).
We will rely on familiar and unfamiliar domains (see the next
section) to simulate background knowledge and lack thereof,
e.g., loan application [31] and medical diagnosis [2]. For ev-
ery predictive model and data domain, the participants will
complete three tasks, each based on two explanations; in
the process, they will answer targeted questions and provide
feedback on the explanatory artefacts. The study workflow
for each task is envisaged as follows:

1. Present an automated decision.
2. Offer its explanation using method A (Explanation 1).
3. Measure comprehension (Questions 1 & 3) and confi-

dence (Question 2).
4. Measure contentment (Question 4) with user rating of

the quantity and quality, communication, and reliability



of the information provided by the explanation.
5. Offer another explanation based on method B.
6. Re-evaluate the 3-Cs.

Case Studies

Explanation 1: Loan application.

The loan request was rejected
because of your income

(e42,000).

Question 1: Comprehension.

Income was the strongest
factor in this specific loan

application.

True.a) False.b)
Can’t say.c) Don’t

know.
d)

Question 2: Confidence.

How confident are you in your
previous answer?

1 2 3 4 5 6 7

Question 3: Comprehension.

Increasing the monthly loan
repayment to e400 will change

the automated decision.

True.a) False.b)
Can’t say.c) Don’t

know.
d)

Question 4: Contentment.

The explanation was easy to
interpret.

1 2 3 4 5 6 7

To ensure the ecological validity of our study, i.e., the gen-
eralisability of its findings, we will consider real and fictitious
scenarios spanning low- and high-stakes domains. Because
the individual perception of each scenario’s impact can be
subjective [8], we will ensure that one case study is always
recognised as having less at stake than the other, albeit
low-stakes cases may not necessarily be of low impact to
all the users across the board [3]. When designing specific
scenarios, we will draw inspiration from relevant application
domains listed in the General Data Protection Regulation
(GDPR) to ensure that they are relatable and align with real-
life ADM systems [33]. Such a comprehensive approach will
allow us to better understand the 3-Cs of XAI and IML tools
in a variety of settings.

When designing the low- and high-stakes ADM case studies,
we will either embed them in reality [15, 21] or narrate them
in a fictitious context that is clearly disconnected from the real
life [19]. An example of a real-world, high-stakes domain is
a financial trading assistant powered by an ADM system; in
this case the explainees risk incurring monetary loss if they
misplace their trust in or misunderstand an insight output by
the agent. Alternative high-stakes scenarios can be situated
in a justice (e.g., pretrial bail), healthcare (e.g., administra-
tion of a life-altering medication) or job screening contexts.
A real-world, low-stakes domain, on the other hand, may be
based on using ADM tools to identify bird species or assist
in playing board games. Similar case studies can be em-
bedded in unfamiliar contexts by asking explainees to: fol-
low recommendations of an ADM medical decision support
tool to decide on a treatment of a sick extraterrestrial (high-

stakes), and vet outfits recommended to an extraterrestrial
by an ADM personal stylist based on attire preferences and
body type (low-stakes).

Both fictitious and real-world use cases come with pros and
cons. By employing the former we can prevent the ex-
plainee’s background knowledge and preferences from in-
fluencing their interaction with XAI and IML systems [19].
For example, user study participants cannot use their pre-
existing medical expertise when dealing with a fictitious ex-
traterrestrial healthcare problem, which forces them to rely
exclusively on the information provided by an explanation.
However, such a setting can compromise the ecological va-
lidity of our study since fictitious domains may be perceived
as abstract and unrelatable, decreasing the participants’ mo-
tivation and engagement. Despite the extraterrestrial health-
care setting being inherently high-stakes, user study partici-
pants may be unable to judge the severity and consequences
of misunderstanding ADM systems given the unrealistic nar-
rative. This phenomenon may be difficult to capture and im-
plicitly impact our 3-Cs when comparing them between low-
and high-stakes domains since the latter setting may not be
perceived as such by some participants.

Real-world use cases are inevitably affected by the back-
ground knowledge of user study participants, which varies
from person to person, is difficult to capture or account for,
and may bias the measurement of our 3-Cs. Such a set-
ting, however, ensures ecological validity of the study find-
ings and maximises (active) engagement of the participants
(especially for high-stakes domains) since they are on the re-
ceiving end of ADM systems [15]. Additionally, the influence
of background knowledge can be reduced by substituting rel-
evant terminology with made-up nomenclature, enabling our
3-C framework to capture the desired properties. While we
will explore both real and fictitious settings in our preliminary



study, as it stands we lean towards real-world scenarios.

Discussion
The target audience of XAI and IML systems is at the heart of
effective, human-understandable explanations of automated
decisions. Each group of people has different requirements,
preferences and expectations with respect to the explana-
tions, fulfilling which secures their trust and confidence in
the delivered information. In view of this, we envision to cap-
ture how the demographic characteristics of explainees may
affect explanation comprehensibility and elucidate the antici-
pated variability through the lens of our 3-C framework. This
will help us to analyse what types of explanations are pre-
ferred by laypersons and which modalities impose usability
barriers.

In particular, we are interested in the manifestation of infor-
mation overload – a situation in which explainees fail to pro-
cess incoming information as it overwhelms their cognitive
abilities. The trade-off between richness and utility of infor-
mation varies to different degrees by explanation type and
modality; for example, providing exhaustive textual explana-
tions is likely to fail in communicating high-impact informa-
tion, which in such scenarios can be easily overlooked. Ex-
ploring the acceptance threshold is therefore critical in ad-
vancing XAI and IML human-centred evaluation frameworks.

Explaining the overall operation of an automated decision-
making system is just as important as doing so for an indi-
vidual output. While the outcome of an “opaque” predictive
model can be justified, such an explanation is fundamentally
different from an inherently transparent model that is open to
scrutiny [16, 22]. Within this purview, is there a point where
transparency – allowing an agent to access the raw, unadul-
terated model – does not improve understanding [28]? We
anticipate to answer this question with our 3-C framework.

Ensuring that explanations are equally interpretable across
distinct demographics and populations is a formative step in
advancing fairness of data-driven systems [17]. By collecting
basic demographic information about the user study partici-
pants, we can assess if individuals from different groups per-
ceive certain explanations as equally comprehensible and
trustworthy [31]. Algorithmic bias is another concern. Pre-
dictive models are generally developed and trained in Global
North [24], which may result in implicit biases and prevent
these systems from generalising to underrepresented demo-
graphics who differ in how they handle cognitive information.
Common considerations include circumstances such as a
discrepancy in literacy and ability to interpret textual or vi-
sual semantics [9, 31].

Conclusion and Future Work
In this position paper, we set out to assess how differences in
explainees’ literacy and education attainment, among many
other traits, shape their interpretation of algorithmic expla-
nations. We developed a quantitative framework to mea-
sure these aspects from three distinct perspectives: com-
prehension, confidence and contentment. Our 3-C evalu-
ation paradigm offers comprehensive and nuanced insights
into how fundamental building blocks of XAI and IML sys-
tems are interpreted. The proposed approach is a first step
towards a grounded evaluation methodology based on user
studies that accounts for individual differences between ex-
plainees.

In future work, we will focus on quantitative assessment of
explainee literacy by designing structured knowledge tests.
We also plan to use real-life explainers across different do-
mains, such as loan approval (high-impact) and animal iden-
tification (low-impact), spanning tabular (e.g., generic numer-
ical and categorical characteristics) and sensory (e.g., spe-
cialised medical imaging) data.
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