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Abstract—With a framework like OpenTuner, one could build 

domain-specific multi-objective program auto-tuners and gain 

significant performance improvements. But explaining why and 

interpreting the results are often hard, mainly due to the large 

number of parameters and the inability to figure out how each 

parameter affects the performance improvement. We have a 

solution that can explain the performance improvements by 

identifying key parameters while providing better insights on the 

tuning process. Our tool uses machine learning techniques to 

identify parameters which account for a significant performance 

improvement. A user could utilize different methods provided in 

the tool to further experiment and verify the accuracy of such 

findings. Further, our tool uses multidimensional scaling to 

display all the configurations in a two dimensional graph. This 

interface allows users to analyze the search space closely and 

identify clusters of configurations with good or bad performance. 

It also provides real-time information of tuning process which 

would help users to optimize the tuning process. 

Keywords— performance tuning; visualization; feature 

engineering; multidimensional scaling 

I.  INTRODUCTION 

 In the present, there are wide range of computer systems that 
have high processing power with different architectures. It 
cannot be guaranteed that a program will have consistent 
performance across multiple computers that have different 
architectures. Therefore generally a program is tuned on a given 
system to achieve maximum possible performance on it. 

1) Auto Tuners 
Changing parameter and flag values and running a program 

for each is not convenient when there are hundreds of flags and 
parameters to choose from. As an example, in gcc (GNU C 
Compiler), there are about 350 flags and parameters in total; in 
HotSpot JVM [1] there are about 600 flags and parameters. 
Therefore, it is practically impossible to use manual methods 
and it requires to automate generating distinct values and run 
program with each value. Auto-tuners provide a solution for the 
aforementioned scenario. Auto-tuners achieve the best-
performing solution after searching a range of possible 
configurations and identifying the one that performs better than 
other configurations. 

a) Domain Specific auto-tuners: Most of the auto-tuners 

are designed for a specific programming language and they 

cannot be used to tune programs that were implemented using a 

different programming language. Such auto-tuners are called 

“domain specific auto-tuners”. All the flags, parameters of the 

programming language (domain) and valid values of each are 

predefined in domain specific auto tuners. Domain specific 

auto-tuners are advantageous as user only has to provide the 

program to be tuned to the auto-tuner. 

b) Domain Independent auto-tuners: Domain 

independent auto-tuners allows users to provide tunable flags 

and parameters of the domain and valid values of them. 

Afterwards, user has to define the required application to be 

tuned and then run the auto-tuner for tuning process. 

2) OpenTuner 
OpenTuner is an open-source and domain-independent 

framework that can be used to build domain-specific multi 
objective auto-tuners. Once the set of flags and parameters are 
defined with possible values or range of values, OpenTuner 
generates the configuration space with distinct flag and 
parameter values using genetic algorithms and inserts into a 
SQLite database. After that it executes the tuning program for 
each configuration and records the execution time in SQLite 
database. On completion of executing program for each 
configuration, it provides the configuration that had minimum 
execution time of program as the output [2].  

B. Problem 

The current implementation of the OpenTuner does not 
include a user interface for the application users who understand 
the configuration parameters and configuration space. Also the 
users do not get enough information to decide whether the 
currently running configuration will actually optimize the 
performance of the program. During a search, user cannot see 
internal information such as how techniques are being used, 
where in the search space that the current search of OpenTuner 
is happening, etc. 

Above issues will limit the capabilities and also the 
efficiency as to decide whether a configuration will diverge or 
converge to an optimized point, a user has to wait until 
OpenTuner finishes its run and it could sometimes take days to 
complete. Also sometimes the configuration space of a program 
will be very large and it is not possible to a user to understand 
the search space configurations. For example in the Java Virtual 
Machine there are about 600 flags [3] that can be used to do 
performance optimization and the search space would be very 
large. Currently a user cannot get direct information of how the 
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search space is traversed and whether the OpenTuner is moving 
towards an optimizing direction. 

II. VISUALIZATION 

A. Visualizing the configuration space 

This section explains the process of visualizing the search 
space and the results of OpenTuner tuning process, which is one 
of the major challenges. The traditional auto tuning tools does 
not provide an insightful interface for users to analyze the 
configuration space. When we look at the each parameter as a 
dimension, visualizing configuration space can be viewed as a 
multidimensional visualization problem. Though there are 
number of multidimensional visualization techniques available, 
they are incapable of visualizing a large number of dimensions 
in a very effective way. Therefore we had to take a different 
approach other than multidimensional visualization.  

Dimensional reduction is one of the key concepts used when 
it is required to visualize or work with a dataset of large number 
of dimensions. We successfully visualized the configuration 
space using four different dimensional reduction techniques.  

In our implementation for Isometric feature mapping 
(Isomap) [3], the reduction happens in three steps. Nearest 
neighbor search is the initial step where we identify a specific 
number of nearest neighbors. Second step is shortest-path graph 
search where we calculate shortest path in the most efficient way 
using either Dijkstra’s Algorithm or the Floyd-Warshall 
algorithm depending on the data set. Finally, Partial eigenvalue 
decomposition process reduces the data into a two-dimensional 
representation. 

In the Multidimensional Scaling (MDS) [4] approach, we 
calculated the dissimilarity between each point using Euclidean 
distance and then used Scaling by Majorizing a Complicated 
Function (SMACOF) algorithm to reduce the data set into a two 
dimensional space. 

The method t-distributed Stochastic Neighbor Embedding (t-
SNE) [5] which is based on Stochastic Neighbor Embedding [6] 
converts affinities of data points to probabilities. The affinities 
in the original space are represented by Gaussian joint 
probabilities and the affinities in the embedded space are 
represented by Student’s t-distributions. 

Locally Linear Embedding (LLE) [7] is another method 
similar to Isometric feature mapping but focuses on preserving 
the local structure of data. 

B. Selecting a reduction method 

Fig. 1. shows results obtained after experimenting with the 
methods described in section A using different datasets. We 
identified MDS as the most appropriate dimensional reduction 
method to be used in the visualization tool considering following 
factors, 

1) Time taken to generate visualization 
As in Table I, Isomap and LLE comparably runs faster than 

other two methods since they only calculate distances for local 
neighbors of each point whereas MDS and t-SNE constructs the 
dissimilarity matrix by calculating distances between all the data 
points. 

 

Fig. 1. Results of Multidimensional reduction using different methods 

TABLE I.  TIME (IN SECONDS) TO GENERATE VISUALIZATION 

Reduction Method 
Number of Configurations 

300 500 1000 

Isomap 0.110 0.371 1.516 

MDS 1.260 6.287 12.998 

t-SNE 1.305 4.049 13.437 

LLE 0.126 0.307 1.207 

 

2) Proximity of data points with similar configurations  
The two dimensional representation of the configuration 

space shown in Fig. 1. needs to preserve the locality of points in 
the multidimensional space. This helps a user to analyze the 
impact of certain parameters on performance since two close 
points represent two configurations which has only few 
parameters with different values. Generally all four techniques 
perform well under this criteria. 

3) Tendency to form clusters of good/bad configurations 
For a user to isolate a set of parameters which account for 

good or bad performance, there should be clusters formed in the 
visualization. This behavior of forming clusters cannot be 
enforced during the reduction process but occurs naturally due 
to different methods used by the particular reduction technique. 
Also the outcome largely depend on the particular tuning data 
obtained from OpenTuner. 

As seen in Fig. 1. both Isomap and MDS forms clusters with 
good/bad performance that allow users to effectively identify 
parameters using the tool. Fig. 2. shows a visualization obtained 
using MDS for the configurations of tuning gcc parameters for 
matrix multiplication program.  
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Fig. 2. Formation of clusters in the configuration space.  

We could clearly identify a cluster of configurations in red 
color which has provided good performance and another cluster 
of configurations in green with bad performance. 

III. ANALYSIS 

A. Related work 

One method of identifying parameters affecting the 
performance is to see what affect the parameter causes when 
inverted from the best configuration. For example of HotSpot 
JVM auto tuning, it is run until completion and the best 
configuration is looked at [1]. For each JVM performance tuning 
flag, the best configuration without the performance tuning flag 
is run to measure the performance. JVM flag that displayed the 
most performance degradation is considered the flag that 
affected the performance the most and the flag with the least 
performance degradation is considered as a flag that affects 
performance the least. 

Advantage of this method is that this method can be used in 
almost all domain specific tuners because of less number of 
assumptions on the domain specific tuner. One assumption that 
is there is that inverting/dropping the parameter is possible. This 
may not be possible where a parameter cannot be dropped and it 
has multiple values. Main disadvantage in this method would be 
that the tuning run has to be run into completion before running 
this method. With auto tuners having hundreds of parameters, 
this may take a considerable amount of time to finish. Also this 
method has to be run on the same host that the tuning run was 
first run to get correct results. 

B. Solution 

1) Pre-processing 
In order to minimize the time taken for a tuning run, auto 

tuners extending the functionality of OpenTuner like gcc flags 
tuner uses a three-valued logic for boolean parameters. For 
example a gcc flag like “-funroll-loops” can be on or off and 
specified on the command line or omitted altogether from the 
command. When the flag is omitted, a default value is chosen 
based on the other flags. This tri-valued logic is used because in 
case of gcc flags optimizing, there are conflicting flags and leads 
to ICEs (Internal Compiler Errors). By adding a default flag, this 
scenario of conflicting flags is reduced as the default value is 
chosen internally by gcc to not have a conflict. 

 

Fig. 3. Timings comparing flag sets obtained by with/without pre-processing. 

Problem with this approach in analyzing and visualizing the 
performance results is that although there are three states, in 
reality there are only two. To remedy this, before analyzing the 
results, we have provided a script to modify the database of 
OpenTuner configurations so that `default` state is replaced with 
either `on` or `off` by getting the information from gcc via the 
command line interface `gcc -Q -v <flags> <parameters> 
source`. This gives the gcc flags enabled by default and by 
scraping the information given by gcc, all flags with `default` 
state are replaced by their corresponding `on` and `off` states. 
Fig. 3. shows the results of using this method. Without using this 
method the configuration given by machine learning algorithms 
perform worse than the default configuration while using this 
method gives a better configuration. Results given in section C 
uses this method as the pre-processing step. 

2) Measuring Importance using statistical correlation 
Measuring the correlation between the response and each of 

the parameter is the simplest method we can use to get an idea 
of what parameters are significantly correlated with the 
response. At the initial stage of the project, we used Pearson’s 
correlation and Spearman’s Correlation to identify the 
significance of the parameters. Generally in machine learning 
domain, features are categorized as follows [8], 

a) Relevant: These are features which have an influence 

on the output and their role can not be assumed by the rest 

b) Irrelevant: Irrelevant features are defined as those 

features not having any influence on the output, and whose 

values are generated at random for each example. 

c) Redundant: A redundancy exists whenever a feature 

can take the role of another. 

One of the major disadvantage in this method is that we 
cannot identify and eliminate the redundant features using the 
above method. Even though redundant features can be identified 
by calculating the whole coefficient matrix, it is infeasible to 
interpret and eliminate those parameters in a case that has 
hundreds of parameters. 

3) Measuring Importance using Random Forests 
Random forest is a popular and very efficient algorithm 

which belongs to the family of ensemble methods. Random 
forest is based on model aggregation ideas, for both 
classification and regression problems [9]. 

The principle of random forests is to combine many binary 
decision trees built using several bootstrap samples coming from 
the training data and choosing randomly at each node a subset 
of explanatory features. In the random forests framework, the 
most widely used score of importance of a given variable is the 
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increasing in mean of the error of a tree (Mean Square Error for 
regression and misclassification rate for classification) in the 
forest when the observed values of this variable are randomly 
permuted in the out of bag samples. 

In this project we extracted the data from the result database 
and built a random forest model and calculated the importance 
score for each parameter. One other advantage in this method is 
that the operation process of finding the importance score of 
each parameter does not change with the program or the 
parameter types. We used the ‘caret’ package in R and its 
implementation of Random forest algorithm. 

C. Results 

For each configuration, timings were taken such that the 
average has 5% error rate with 95% confidence. Identification 
of the most important parameters was done using the random 
forest algorithm. Although the random forest algorithm gives the 
importance of each flag and parameter, it does not give the value 
for the flag or parameter that gives the best result. Therefore, to 
find out the value for the parameter, the best configuration was 
selected and then the selected flag or parameter values were 
taken from there. 

1) Tuning GNU C Compiler 
GCC contains around 360 tunable parameters that would 

help in improving the running time of a C program. These 
experiments were done using the GCC auto tuner implemented 
on OpenTuner by the developers of the OpenTuner. 
Experiments were carried out on an Intel(R) Core(TM) i5-
5200U CPU @ 2.20GHz x86_64 architecture with gcc (Ubuntu 
5.2.1-22ubuntu2) 5.2.1 and benchmark program Matrix 
multiplication. This section presents the results obtained from 
the experiments carried out. 

Matrix multiplication is a benchmark program designed by 
the developers of OpenTuner. It is a C++ program for 
multiplying two matrices. Implementation is a serial algorithm 
with no optimization except transposing the second operand to 
the multiplication to make good use of the cache. 

TABLE II.  SIGNIFICANCE OF PARAMETERS GIVEN BY REMOVING 

PARAMETERS ONE BY ONE FROM THE BEST CONFIGURATION 

Parameter Importance 

-finline-small-functions 21.90% 

-finline-functions 20.80% 

-funsafe-math-optimizations 19.70% 

-fwrapv 19.10% 

-funroll-loops 2.50% 

-foptimize-sibling-calls 2.40% 

-ftree-vrp 2.00% 

-fbranch-probabilities 1.40% 

--param=tracer-min-branch-probability=100 1.40% 

--param=max-average-unrolled-insns=20 1.30% 

-fno-sched-interblock 0.70% 

-fno-tree-forwprop 0.70% 

 

Fig. 4. Running-time of Matrix-multiplication against the size of dataset using 

randomforest algorithm 

OpenTuner developers have given a way to identify the 
significance of the parameters by recording the running time 
after removing each flag. Results from this method are shown in 
Table II. Top 12 most significant parameters were used in 
compiling the program again and then timings were recorded. 

Next, we tried the machine learning algorithms to figure out 
the significant parameters affecting the performance. With this 
approach also, we used top 12 most significant parameters. Fig. 
4. shows the running times of the benchmark with important 
parameters found through machine learning algorithm as 
OpenTuner is testing configurations. Algorithm is run after 
every 150 configurations that OpenTuner outputs. As more and 
more configurations are searched by OpenTuner, the results get 
better, but some outliers are visible. Importance of the parameter 
was calculated by normalizing the importance value given by the 
machine learning algorithm.  

Top 12 parameters and the corresponding significance given 
by RandomForest algorithm is given in Table III. Running times 
of the benchmark is summarized in Fig. 5. Default configuration 
for GCC with -O3 option takes 0.1531 ms. Best configuration 
given by OpenTuner takes 0.0428 ms. Reduced set given by the 
Random Forest algorithm takes 0.0442 ms while removing flags 
one by one takes 0.0448 ms.  

TABLE III.  SIGNIFICANCE OF TOP PARAMETERS GIVEN BY 

RANDOMFOREST ALGORITHM 

Parameter Importance 

-ffloat-store 3.32% 

-fsignaling-nans 2.08% 

-O 1.95% 

-ftree-loop-optimize 1.59% 

-ftree-loop-vectorize 1.29% 

max-once-peeled-insns 1.12% 

omega-max-eqs 1.09% 

-funsafe-math-optimizations 0.96% 

uninit-control-dep-attempts 0.95% 

max-modulo-backtrack-attempts 0.86% 

selsched-max-lookahead 0.84% 

loop-block-tile-size 0.84% 
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Fig. 5. Running time for the Matrix-multiplication benchmark using several 

approaches 

Therefore the 12 parameters given by the Random Forest 
algorithm explains 98.73% of the speedup gained by the best 
configuration which had 360 parameters. 

2) Tuning Hotspot JVM 
Tuning of the Hotspot JVM [1] was carried out using 

benchmarks provided by the DaCapo Benchmark Suite. 
Experiments were carried out on an Intel(R) Core(TM) i5-
5200U CPU @ 2.20GHz x86_64 architecture with, OpenJDK 
java version "1.7.0_91", OpenJDK Runtime Environment 
(IcedTea 2.6.3) (7u91-2.6.3-0ubuntu0.15.10.1) and OpenJDK 
64-Bit Server VM (build 24.91-b01, mixed mode) 

DaCapo 9.12 lusearch benchmark [10] is a benchmark which 
uses Apache Lucene to run 64 text search queries in the works 
of Shakespeare and the King James Bible. OpenTuner was run 
for 3 hours to get the best configuration and there was a speedup 
of 47.36 % compared to the default value. In this section we will 
look at how to figure out what caused this speedup. 

First, flag importance was calculated using the OpenTuner 
method of removing flags one by one from the best 
configuration. Running time of the configuration without the 
flag was measured and then importance was calculated as in (1) 
and (2). 

TABLE IV.  SIGNIFICANCE OF PARAMETERS GIVEN BY REMOVING 

PARAMETERS ONE BY ONE FROM THE BEST CONFIGURATION 

Parameter Importance 

-XX:-NeedsDeoptSuspend 1.99% 

-XX:-UseGCTaskAffinity 1.93% 

-XX:-DumpSharedSpaces 1.87% 

-XX:+UseSharedSpaces 1.76% 

-XX:GCTaskTimeStampEntries=20 1.63% 

-XX:-DisableExplicitGC 1.59% 

-XX:-ParallelRefProcEnabled 1.42% 

-XX:InteriorEntryAlignment=17 1.40% 

-XX:-ReduceInitialCardMarks 1.34% 

-XX:-RequireSharedSpaces 1.33% 

-XX:-NeedsDeoptSuspend 1.99% 

-XX:-UseGCTaskAffinity 1.93% 

 

Fig. 6. Running-time of DaCapo 9.12 lusearch against the size of dataset using 

randomforest algorithm 

Impact = Running Time of Configuration – Running Time of 
Best Configuration   

 Importance = Impact * 100 / Total Impact 

When the benchmark was run with the above 10 parameters, 
the JVM crashed and the parameter -
XX:InteriorEntryAlignment=17 had to be removed to make the 
JVM run normally into completion. 

RandomForest algorithm was also run to get the importance 
of the parameters for the benchmark and the algorithm was run 
after every 35 configurations in the tuning run and DaCapo 
lusearch benchmark running time was measured with the most 
important 10 parameters that the algorithm output as shown in 
Fig. 6. 

Most important parameters that the random forest algorithm 
gave is listed in Table V. 

TABLE V.  SIGNIFICANCE OF TOP PARAMETERS GIVEN BY 

RANDOMFOREST ALGORITHM 

Parameter Importance 

-XX:StackShadowPages=20 0.90% 

-XX:OldPLABWeight=25 0.61% 

-XX:NodeLimitFudgeFactor=1493 0.56% 

-XX:CodeCacheExpansionSize=33889 0.53% 

-XX:-ProfileInterpreter 0.49% 

-XX:ParallelOldDeadWoodLimiterStdDev=44 0.47% 

-XX:LargePageHeapSizeThreshold=73320140 0.46% 

-XX:MaxRAM=178918540219 0.43% 

-XX:-UseInlineCaches 0.41% 

TABLE VI.  SIGNIFICANT PARAMETERS WITH DEFAULT VALUES 

Parameter Importance 

-XX:+UseCompiler 1.13% 

-XX:Tier3CompileThreshold=2000 0.73% 

-XX:Tier4InvocationThreshold=5000 0.62% 

-XX:G1UpdateBufferSize=256 0.52% 

-XX:Tier4MinInvocationThreshold=600 0.52% 
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Fig. 7. Running time for the DaCapo 9.12 lusearch benchmark using several 

approaches 

Parameters in Table VI were also given as important to the 
running-time, but they have values equal to the default and hence 
it can be concluded that these parameters affect the performance 
in a negative way when the value is not the default for the JVM. 

Running time of the benchmark is summarized in Fig. 7. 
Default configuration for JVM without any tuning options takes 
3853.2 ms. Best configuration given by OpenTuner takes 2028.3 
ms. Reduced set given by the Random Forest algorithm takes 
2189.8 ms while removing flags one by one takes 4222.2 ms. 
Therefore the 9 parameters given by the Random Forest 
algorithm explains 91.15% of the speedup gained by the best 
configuration which had 412 parameters. 

IV. DISCUSSION AND CONCLUSION 

We set out to develop a minimal invasive visualization and 
analysis tool for OpenTuner. This tool had to be generic enough 
for handle all kinds of domain specific tuners that extend the 
functionality of OpenTuner. Also the tool could not have any 
impact on the tuning process, but allow the user to visualize and 
analyze while the tuning process is going on.  

One major drawback of existing methods in OpenTuner for 
analysis was that it could be done only after the tuning run is 
over in the same workstation that the tuning was going on 
because the tuning program had to be run again for the analysis. 
Analysis and visualization tool presented can be used remotely 
in another workstation without interrupting the tuning process as 
it uses only the data that is already there and uses machine 
learning techniques for analysis. 

Machine learning techniques are highly sensitive to data and 
even though there is a very good speedup in tuning, it takes lots 
more configurations for a good configuration to come out of the 
machine learning techniques. Reason for this is that while 
OpenTuner is searching the configuration space, OpenTuner 
might happen upon a configuration by chance and that 
configuration might be the best configuration. For the machine 
learning technique to identify the best parameters, OpenTuner 
has to search around this best configuration as well. As searches 
around the best configurations are fed into the machine learning 
algorithm, the algorithm can come into conclusions about the 
parameters with more accuracy. 

Visualization is also very important to get an idea about the 
tuning process. There’s no visualization in OpenTuner and we 
introduced two interfaces for OpenTuner where a user could get 
insights on the tuning process. Our primary interface, which 

consists of a graph with execution time against the runtime of 
OpenTuner is aimed at users who want information on the 
progress of tuning process. The second interface, obtained by 
applying dimensional reduction to the data set is more relevant 
for advanced users who wish to analyse the tuning process by 
examining the configuration space.  

The two major objectives of the project was to develop an 
analysis platform and a visualization tool for OpenTuner and to 
explain the importance of parameters towards the performance 
improvement. Our solution contains two novel approaches in 
achieving these two objectives. We used Multi Dimensional 
Scaling as a dimensional reduction technique to visualize the 
configuration space in a two dimensional graph. We 
successfully applied random forest as a machine learning 
techniques to identify parameters which have a significant 
impact towards performance. 

Our tool provide ample support for a user to understand the 
tuning process and obtain various results and optimizations 
through that. Key features provided in the tool are visualizing 
the configuration space and tuning process in real time, 
comparing individual configurations or regions, identifying 
important parameters using machine learning techniques and 
analyzing the effect on performance for a user specified 
configuration.  
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