

A Visualization and Analysis Platform for

Performance Tuning

H.M.D. Eranjith, I.D. Fernando, G.K.S. Fernando, W.C.M. Soysa, V.S.D. Jayasena

Department of Computer Science and Engineering

University of Moratuwa

Katubedda, Sri Lanka

{danula.11, isuru.11, kasun.11, madawa.11, sanath}@cse.mrt.ac.lk

Abstract—With a framework like OpenTuner, one could build

domain-specific multi-objective program auto-tuners and gain

significant performance improvements. But explaining why and

interpreting the results are often hard, mainly due to the large

number of parameters and the inability to figure out how each

parameter affects the performance improvement. We have a

solution that can explain the performance improvements by

identifying key parameters while providing better insights on the

tuning process. Our tool uses machine learning techniques to

identify parameters which account for a significant performance

improvement. A user could utilize different methods provided in

the tool to further experiment and verify the accuracy of such

findings. Further, our tool uses multidimensional scaling to

display all the configurations in a two dimensional graph. This

interface allows users to analyze the search space closely and

identify clusters of configurations with good or bad performance.

It also provides real-time information of tuning process which

would help users to optimize the tuning process.

Keywords— performance tuning; visualization; feature

engineering; multidimensional scaling

I. INTRODUCTION

 In the present, there are wide range of computer systems that
have high processing power with different architectures. It
cannot be guaranteed that a program will have consistent
performance across multiple computers that have different
architectures. Therefore generally a program is tuned on a given
system to achieve maximum possible performance on it.

1) Auto Tuners
Changing parameter and flag values and running a program

for each is not convenient when there are hundreds of flags and
parameters to choose from. As an example, in gcc (GNU C
Compiler), there are about 350 flags and parameters in total; in
HotSpot JVM [1] there are about 600 flags and parameters.
Therefore, it is practically impossible to use manual methods
and it requires to automate generating distinct values and run
program with each value. Auto-tuners provide a solution for the
aforementioned scenario. Auto-tuners achieve the best-
performing solution after searching a range of possible
configurations and identifying the one that performs better than
other configurations.

a) Domain Specific auto-tuners: Most of the auto-tuners

are designed for a specific programming language and they

cannot be used to tune programs that were implemented using a

different programming language. Such auto-tuners are called

“domain specific auto-tuners”. All the flags, parameters of the

programming language (domain) and valid values of each are

predefined in domain specific auto tuners. Domain specific

auto-tuners are advantageous as user only has to provide the

program to be tuned to the auto-tuner.

b) Domain Independent auto-tuners: Domain

independent auto-tuners allows users to provide tunable flags

and parameters of the domain and valid values of them.

Afterwards, user has to define the required application to be

tuned and then run the auto-tuner for tuning process.

2) OpenTuner
OpenTuner is an open-source and domain-independent

framework that can be used to build domain-specific multi
objective auto-tuners. Once the set of flags and parameters are
defined with possible values or range of values, OpenTuner
generates the configuration space with distinct flag and
parameter values using genetic algorithms and inserts into a
SQLite database. After that it executes the tuning program for
each configuration and records the execution time in SQLite
database. On completion of executing program for each
configuration, it provides the configuration that had minimum
execution time of program as the output [2].

B. Problem

The current implementation of the OpenTuner does not
include a user interface for the application users who understand
the configuration parameters and configuration space. Also the
users do not get enough information to decide whether the
currently running configuration will actually optimize the
performance of the program. During a search, user cannot see
internal information such as how techniques are being used,
where in the search space that the current search of OpenTuner
is happening, etc.

Above issues will limit the capabilities and also the
efficiency as to decide whether a configuration will diverge or
converge to an optimized point, a user has to wait until
OpenTuner finishes its run and it could sometimes take days to
complete. Also sometimes the configuration space of a program
will be very large and it is not possible to a user to understand
the search space configurations. For example in the Java Virtual
Machine there are about 600 flags [3] that can be used to do
performance optimization and the search space would be very
large. Currently a user cannot get direct information of how the

978-1-5090-0645-8/16/$31.00 ©2016 IEEE

72

search space is traversed and whether the OpenTuner is moving
towards an optimizing direction.

II. VISUALIZATION

A. Visualizing the configuration space

This section explains the process of visualizing the search
space and the results of OpenTuner tuning process, which is one
of the major challenges. The traditional auto tuning tools does
not provide an insightful interface for users to analyze the
configuration space. When we look at the each parameter as a
dimension, visualizing configuration space can be viewed as a
multidimensional visualization problem. Though there are
number of multidimensional visualization techniques available,
they are incapable of visualizing a large number of dimensions
in a very effective way. Therefore we had to take a different
approach other than multidimensional visualization.

Dimensional reduction is one of the key concepts used when
it is required to visualize or work with a dataset of large number
of dimensions. We successfully visualized the configuration
space using four different dimensional reduction techniques.

In our implementation for Isometric feature mapping
(Isomap) [3], the reduction happens in three steps. Nearest
neighbor search is the initial step where we identify a specific
number of nearest neighbors. Second step is shortest-path graph
search where we calculate shortest path in the most efficient way
using either Dijkstra’s Algorithm or the Floyd-Warshall
algorithm depending on the data set. Finally, Partial eigenvalue
decomposition process reduces the data into a two-dimensional
representation.

In the Multidimensional Scaling (MDS) [4] approach, we
calculated the dissimilarity between each point using Euclidean
distance and then used Scaling by Majorizing a Complicated
Function (SMACOF) algorithm to reduce the data set into a two
dimensional space.

The method t-distributed Stochastic Neighbor Embedding (t-
SNE) [5] which is based on Stochastic Neighbor Embedding [6]
converts affinities of data points to probabilities. The affinities
in the original space are represented by Gaussian joint
probabilities and the affinities in the embedded space are
represented by Student’s t-distributions.

Locally Linear Embedding (LLE) [7] is another method
similar to Isometric feature mapping but focuses on preserving
the local structure of data.

B. Selecting a reduction method

Fig. 1. shows results obtained after experimenting with the
methods described in section A using different datasets. We
identified MDS as the most appropriate dimensional reduction
method to be used in the visualization tool considering following
factors,

1) Time taken to generate visualization
As in Table I, Isomap and LLE comparably runs faster than

other two methods since they only calculate distances for local
neighbors of each point whereas MDS and t-SNE constructs the
dissimilarity matrix by calculating distances between all the data
points.

Fig. 1. Results of Multidimensional reduction using different methods

TABLE I. TIME (IN SECONDS) TO GENERATE VISUALIZATION

Reduction Method
Number of Configurations

300 500 1000

Isomap 0.110 0.371 1.516

MDS 1.260 6.287 12.998

t-SNE 1.305 4.049 13.437

LLE 0.126 0.307 1.207

2) Proximity of data points with similar configurations
The two dimensional representation of the configuration

space shown in Fig. 1. needs to preserve the locality of points in
the multidimensional space. This helps a user to analyze the
impact of certain parameters on performance since two close
points represent two configurations which has only few
parameters with different values. Generally all four techniques
perform well under this criteria.

3) Tendency to form clusters of good/bad configurations
For a user to isolate a set of parameters which account for

good or bad performance, there should be clusters formed in the
visualization. This behavior of forming clusters cannot be
enforced during the reduction process but occurs naturally due
to different methods used by the particular reduction technique.
Also the outcome largely depend on the particular tuning data
obtained from OpenTuner.

As seen in Fig. 1. both Isomap and MDS forms clusters with
good/bad performance that allow users to effectively identify
parameters using the tool. Fig. 2. shows a visualization obtained
using MDS for the configurations of tuning gcc parameters for
matrix multiplication program.

73

Fig. 2. Formation of clusters in the configuration space.

We could clearly identify a cluster of configurations in red
color which has provided good performance and another cluster
of configurations in green with bad performance.

III. ANALYSIS

A. Related work

One method of identifying parameters affecting the
performance is to see what affect the parameter causes when
inverted from the best configuration. For example of HotSpot
JVM auto tuning, it is run until completion and the best
configuration is looked at [1]. For each JVM performance tuning
flag, the best configuration without the performance tuning flag
is run to measure the performance. JVM flag that displayed the
most performance degradation is considered the flag that
affected the performance the most and the flag with the least
performance degradation is considered as a flag that affects
performance the least.

Advantage of this method is that this method can be used in
almost all domain specific tuners because of less number of
assumptions on the domain specific tuner. One assumption that
is there is that inverting/dropping the parameter is possible. This
may not be possible where a parameter cannot be dropped and it
has multiple values. Main disadvantage in this method would be
that the tuning run has to be run into completion before running
this method. With auto tuners having hundreds of parameters,
this may take a considerable amount of time to finish. Also this
method has to be run on the same host that the tuning run was
first run to get correct results.

B. Solution

1) Pre-processing
In order to minimize the time taken for a tuning run, auto

tuners extending the functionality of OpenTuner like gcc flags
tuner uses a three-valued logic for boolean parameters. For
example a gcc flag like “-funroll-loops” can be on or off and
specified on the command line or omitted altogether from the
command. When the flag is omitted, a default value is chosen
based on the other flags. This tri-valued logic is used because in
case of gcc flags optimizing, there are conflicting flags and leads
to ICEs (Internal Compiler Errors). By adding a default flag, this
scenario of conflicting flags is reduced as the default value is
chosen internally by gcc to not have a conflict.

Fig. 3. Timings comparing flag sets obtained by with/without pre-processing.

Problem with this approach in analyzing and visualizing the
performance results is that although there are three states, in
reality there are only two. To remedy this, before analyzing the
results, we have provided a script to modify the database of
OpenTuner configurations so that `default` state is replaced with
either `on` or `off` by getting the information from gcc via the
command line interface `gcc -Q -v <flags> <parameters>
source`. This gives the gcc flags enabled by default and by
scraping the information given by gcc, all flags with `default`
state are replaced by their corresponding `on` and `off` states.
Fig. 3. shows the results of using this method. Without using this
method the configuration given by machine learning algorithms
perform worse than the default configuration while using this
method gives a better configuration. Results given in section C
uses this method as the pre-processing step.

2) Measuring Importance using statistical correlation
Measuring the correlation between the response and each of

the parameter is the simplest method we can use to get an idea
of what parameters are significantly correlated with the
response. At the initial stage of the project, we used Pearson’s
correlation and Spearman’s Correlation to identify the
significance of the parameters. Generally in machine learning
domain, features are categorized as follows [8],

a) Relevant: These are features which have an influence

on the output and their role can not be assumed by the rest

b) Irrelevant: Irrelevant features are defined as those

features not having any influence on the output, and whose

values are generated at random for each example.

c) Redundant: A redundancy exists whenever a feature

can take the role of another.

One of the major disadvantage in this method is that we
cannot identify and eliminate the redundant features using the
above method. Even though redundant features can be identified
by calculating the whole coefficient matrix, it is infeasible to
interpret and eliminate those parameters in a case that has
hundreds of parameters.

3) Measuring Importance using Random Forests
Random forest is a popular and very efficient algorithm

which belongs to the family of ensemble methods. Random
forest is based on model aggregation ideas, for both
classification and regression problems [9].

The principle of random forests is to combine many binary
decision trees built using several bootstrap samples coming from
the training data and choosing randomly at each node a subset
of explanatory features. In the random forests framework, the
most widely used score of importance of a given variable is the

74

increasing in mean of the error of a tree (Mean Square Error for
regression and misclassification rate for classification) in the
forest when the observed values of this variable are randomly
permuted in the out of bag samples.

In this project we extracted the data from the result database
and built a random forest model and calculated the importance
score for each parameter. One other advantage in this method is
that the operation process of finding the importance score of
each parameter does not change with the program or the
parameter types. We used the ‘caret’ package in R and its
implementation of Random forest algorithm.

C. Results

For each configuration, timings were taken such that the
average has 5% error rate with 95% confidence. Identification
of the most important parameters was done using the random
forest algorithm. Although the random forest algorithm gives the
importance of each flag and parameter, it does not give the value
for the flag or parameter that gives the best result. Therefore, to
find out the value for the parameter, the best configuration was
selected and then the selected flag or parameter values were
taken from there.

1) Tuning GNU C Compiler
GCC contains around 360 tunable parameters that would

help in improving the running time of a C program. These
experiments were done using the GCC auto tuner implemented
on OpenTuner by the developers of the OpenTuner.
Experiments were carried out on an Intel(R) Core(TM) i5-
5200U CPU @ 2.20GHz x86_64 architecture with gcc (Ubuntu
5.2.1-22ubuntu2) 5.2.1 and benchmark program Matrix
multiplication. This section presents the results obtained from
the experiments carried out.

Matrix multiplication is a benchmark program designed by
the developers of OpenTuner. It is a C++ program for
multiplying two matrices. Implementation is a serial algorithm
with no optimization except transposing the second operand to
the multiplication to make good use of the cache.

TABLE II. SIGNIFICANCE OF PARAMETERS GIVEN BY REMOVING

PARAMETERS ONE BY ONE FROM THE BEST CONFIGURATION

Parameter Importance

-finline-small-functions 21.90%

-finline-functions 20.80%

-funsafe-math-optimizations 19.70%

-fwrapv 19.10%

-funroll-loops 2.50%

-foptimize-sibling-calls 2.40%

-ftree-vrp 2.00%

-fbranch-probabilities 1.40%

--param=tracer-min-branch-probability=100 1.40%

--param=max-average-unrolled-insns=20 1.30%

-fno-sched-interblock 0.70%

-fno-tree-forwprop 0.70%

Fig. 4. Running-time of Matrix-multiplication against the size of dataset using

randomforest algorithm

OpenTuner developers have given a way to identify the
significance of the parameters by recording the running time
after removing each flag. Results from this method are shown in
Table II. Top 12 most significant parameters were used in
compiling the program again and then timings were recorded.

Next, we tried the machine learning algorithms to figure out
the significant parameters affecting the performance. With this
approach also, we used top 12 most significant parameters. Fig.
4. shows the running times of the benchmark with important
parameters found through machine learning algorithm as
OpenTuner is testing configurations. Algorithm is run after
every 150 configurations that OpenTuner outputs. As more and
more configurations are searched by OpenTuner, the results get
better, but some outliers are visible. Importance of the parameter
was calculated by normalizing the importance value given by the
machine learning algorithm.

Top 12 parameters and the corresponding significance given
by RandomForest algorithm is given in Table III. Running times
of the benchmark is summarized in Fig. 5. Default configuration
for GCC with -O3 option takes 0.1531 ms. Best configuration
given by OpenTuner takes 0.0428 ms. Reduced set given by the
Random Forest algorithm takes 0.0442 ms while removing flags
one by one takes 0.0448 ms.

TABLE III. SIGNIFICANCE OF TOP PARAMETERS GIVEN BY

RANDOMFOREST ALGORITHM

Parameter Importance

-ffloat-store 3.32%

-fsignaling-nans 2.08%

-O 1.95%

-ftree-loop-optimize 1.59%

-ftree-loop-vectorize 1.29%

max-once-peeled-insns 1.12%

omega-max-eqs 1.09%

-funsafe-math-optimizations 0.96%

uninit-control-dep-attempts 0.95%

max-modulo-backtrack-attempts 0.86%

selsched-max-lookahead 0.84%

loop-block-tile-size 0.84%

75

Fig. 5. Running time for the Matrix-multiplication benchmark using several

approaches

Therefore the 12 parameters given by the Random Forest
algorithm explains 98.73% of the speedup gained by the best
configuration which had 360 parameters.

2) Tuning Hotspot JVM
Tuning of the Hotspot JVM [1] was carried out using

benchmarks provided by the DaCapo Benchmark Suite.
Experiments were carried out on an Intel(R) Core(TM) i5-
5200U CPU @ 2.20GHz x86_64 architecture with, OpenJDK
java version "1.7.0_91", OpenJDK Runtime Environment
(IcedTea 2.6.3) (7u91-2.6.3-0ubuntu0.15.10.1) and OpenJDK
64-Bit Server VM (build 24.91-b01, mixed mode)

DaCapo 9.12 lusearch benchmark [10] is a benchmark which
uses Apache Lucene to run 64 text search queries in the works
of Shakespeare and the King James Bible. OpenTuner was run
for 3 hours to get the best configuration and there was a speedup
of 47.36 % compared to the default value. In this section we will
look at how to figure out what caused this speedup.

First, flag importance was calculated using the OpenTuner
method of removing flags one by one from the best
configuration. Running time of the configuration without the
flag was measured and then importance was calculated as in (1)
and (2).

TABLE IV. SIGNIFICANCE OF PARAMETERS GIVEN BY REMOVING

PARAMETERS ONE BY ONE FROM THE BEST CONFIGURATION

Parameter Importance

-XX:-NeedsDeoptSuspend 1.99%

-XX:-UseGCTaskAffinity 1.93%

-XX:-DumpSharedSpaces 1.87%

-XX:+UseSharedSpaces 1.76%

-XX:GCTaskTimeStampEntries=20 1.63%

-XX:-DisableExplicitGC 1.59%

-XX:-ParallelRefProcEnabled 1.42%

-XX:InteriorEntryAlignment=17 1.40%

-XX:-ReduceInitialCardMarks 1.34%

-XX:-RequireSharedSpaces 1.33%

-XX:-NeedsDeoptSuspend 1.99%

-XX:-UseGCTaskAffinity 1.93%

Fig. 6. Running-time of DaCapo 9.12 lusearch against the size of dataset using

randomforest algorithm

Impact = Running Time of Configuration – Running Time of
Best Configuration  

 Importance = Impact * 100 / Total Impact 

When the benchmark was run with the above 10 parameters,
the JVM crashed and the parameter -
XX:InteriorEntryAlignment=17 had to be removed to make the
JVM run normally into completion.

RandomForest algorithm was also run to get the importance
of the parameters for the benchmark and the algorithm was run
after every 35 configurations in the tuning run and DaCapo
lusearch benchmark running time was measured with the most
important 10 parameters that the algorithm output as shown in
Fig. 6.

Most important parameters that the random forest algorithm
gave is listed in Table V.

TABLE V. SIGNIFICANCE OF TOP PARAMETERS GIVEN BY

RANDOMFOREST ALGORITHM

Parameter Importance

-XX:StackShadowPages=20 0.90%

-XX:OldPLABWeight=25 0.61%

-XX:NodeLimitFudgeFactor=1493 0.56%

-XX:CodeCacheExpansionSize=33889 0.53%

-XX:-ProfileInterpreter 0.49%

-XX:ParallelOldDeadWoodLimiterStdDev=44 0.47%

-XX:LargePageHeapSizeThreshold=73320140 0.46%

-XX:MaxRAM=178918540219 0.43%

-XX:-UseInlineCaches 0.41%

TABLE VI. SIGNIFICANT PARAMETERS WITH DEFAULT VALUES

Parameter Importance

-XX:+UseCompiler 1.13%

-XX:Tier3CompileThreshold=2000 0.73%

-XX:Tier4InvocationThreshold=5000 0.62%

-XX:G1UpdateBufferSize=256 0.52%

-XX:Tier4MinInvocationThreshold=600 0.52%

76

Fig. 7. Running time for the DaCapo 9.12 lusearch benchmark using several

approaches

Parameters in Table VI were also given as important to the
running-time, but they have values equal to the default and hence
it can be concluded that these parameters affect the performance
in a negative way when the value is not the default for the JVM.

Running time of the benchmark is summarized in Fig. 7.
Default configuration for JVM without any tuning options takes
3853.2 ms. Best configuration given by OpenTuner takes 2028.3
ms. Reduced set given by the Random Forest algorithm takes
2189.8 ms while removing flags one by one takes 4222.2 ms.
Therefore the 9 parameters given by the Random Forest
algorithm explains 91.15% of the speedup gained by the best
configuration which had 412 parameters.

IV. DISCUSSION AND CONCLUSION

We set out to develop a minimal invasive visualization and
analysis tool for OpenTuner. This tool had to be generic enough
for handle all kinds of domain specific tuners that extend the
functionality of OpenTuner. Also the tool could not have any
impact on the tuning process, but allow the user to visualize and
analyze while the tuning process is going on.

One major drawback of existing methods in OpenTuner for
analysis was that it could be done only after the tuning run is
over in the same workstation that the tuning was going on
because the tuning program had to be run again for the analysis.
Analysis and visualization tool presented can be used remotely
in another workstation without interrupting the tuning process as
it uses only the data that is already there and uses machine
learning techniques for analysis.

Machine learning techniques are highly sensitive to data and
even though there is a very good speedup in tuning, it takes lots
more configurations for a good configuration to come out of the
machine learning techniques. Reason for this is that while
OpenTuner is searching the configuration space, OpenTuner
might happen upon a configuration by chance and that
configuration might be the best configuration. For the machine
learning technique to identify the best parameters, OpenTuner
has to search around this best configuration as well. As searches
around the best configurations are fed into the machine learning
algorithm, the algorithm can come into conclusions about the
parameters with more accuracy.

Visualization is also very important to get an idea about the
tuning process. There’s no visualization in OpenTuner and we
introduced two interfaces for OpenTuner where a user could get
insights on the tuning process. Our primary interface, which

consists of a graph with execution time against the runtime of
OpenTuner is aimed at users who want information on the
progress of tuning process. The second interface, obtained by
applying dimensional reduction to the data set is more relevant
for advanced users who wish to analyse the tuning process by
examining the configuration space.

The two major objectives of the project was to develop an
analysis platform and a visualization tool for OpenTuner and to
explain the importance of parameters towards the performance
improvement. Our solution contains two novel approaches in
achieving these two objectives. We used Multi Dimensional
Scaling as a dimensional reduction technique to visualize the
configuration space in a two dimensional graph. We
successfully applied random forest as a machine learning
techniques to identify parameters which have a significant
impact towards performance.

Our tool provide ample support for a user to understand the
tuning process and obtain various results and optimizations
through that. Key features provided in the tool are visualizing
the configuration space and tuning process in real time,
comparing individual configurations or regions, identifying
important parameters using machine learning techniques and
analyzing the effect on performance for a user specified
configuration.

REFERENCES

[1] S. Jayasena, M. Fernando, T. Rusira, C. Perera, and C. Philips,
“Auto-tuning the Java Virtual Machine,” in Proceedings of the
IEEE International Workshop on Automatic Performance Tuning
2015 (iWAPT2015), 2015, pp. 1261–1270.

[2] J. Ansel, S. Kamil, K. Veeramachaneni, J. Ragan-Kelley, J.
Bosboom, U.-M. O’Reilly, and S. Amarasinghe, “Opentuner: An
extensible framework for program autotuning,” in Proceedings of
the 23rd international conference on Parallel architectures and
compilation, 2014, pp. 303–316.

[3] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global
geometric framework for nonlinear dimensionality reduction,”
Science (80-.)., vol. 290, no. 5500, pp. 2319–2323, 2000.

[4] J. B. Kruskal, “Multidimensional scaling by optimizing goodness of
fit to a nonmetric hypothesis,” Psychometrika, vol. 29, no. 1, pp. 1–
27, 1964.

[5] L. J. P. Van Der Maaten and G. E. Hinton, “Visualizing high-
dimensional data using t-sne,” J. Mach. Learn. Res., vol. 9, no. 85,
pp. 2579–2605, 2008.

[6] G. E. Hinton and S. T. Roweis, “Stochastic neighbor embedding,” in
Advances in Neural Information Processing Systems 15, 2002, pp.
833–840.

[7] S. T. Roweis and L. K. Saul, “Nonlinear Dimensionality Reduction
by Locally Linear Embedding,” Sci. New Ser., vol. 290, no. 5500,
pp. 2323–2326, 2000.

[8] M. Hall, “Correlation-based feature selection for machine learning,”
The University of Waikato, 1999.

[9] J.-M. P. Robin Genuer and C. Tuleau-Malot, “Variable Selection
using Random Forests,” Pattern Recognitions Lett. 31, vol. 31, no.
14, pp. 2225–2236, Nov. 2010.

[10] S. M. Blackburn, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H.
Lee, J. Eliot, B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen,
R. Garner, D. von Dincklage, B. Wiedermann, C. Hoffmann, A. M.
Khang, K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg, and D.
Frampton, “The DaCapo benchmarks,” ACM SIGPLAN Not., vol.
41, no. 10, p. 169, 2006.

77

